Federal Aviation Administration – <u>Regulations and Policies</u> Aviation Rulemaking Advisory Committee Transport Airplane and Engine Issue Area Flight Test Harmonization Working Group Task 2 – Gate Requirements for High Lift Devices # Task Assignment #### Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. **ACTION:** Notice of new task assignment for the Aviation Rulemaking Advisory Committee. SUMMARY: Notice is given of new task assignments for the Flight Test Working Group of the Aviation Rulemaking Advisory Committee (ARAC). This notice informs the public of the activities of the ARAC. FOR FURTHER INFORMATION CONTACT: Michael H. Borfitz, Assistant Executive Director, Aviation Rulemaking Advisory Committee, Transport Airplane and Engine Issues, FAA Engine & Propeller Directorate, 12 New England Executive Park, Burlington, Massachusetts 01803; telephone (617) 238-7110, fax (617) 238-7199. SUPPLEMENTARY INFORMATION: On January 22, 1991 (56 FR 2190), the Federal Aviation Administration (FAA) established the Aviation Rulemaking Advisory Committee (ARAC). The committee provides advice and recommendations to the FAA Administrator, through the Associate Administrator for Regulation and Certification, on the full range of the FAA's rulemaking activities with respect to aviation-related issues. In order to develop such advice and recommendations, the ARAC may choose to establish working groups to which specific tasks are assigned. Such working groups are comprised of experts from those organizations having an interest in the assigned task. A working group member need not be a representative of the full committee. One of the working groups established by the ARAC is the Flight Test Working Group. The FAA announced at the Joint Aviation Authorities (JAA)-Federal Aviation Administration (FAA) Harmonization Conference in Toronto, Canada June 2–5, 1992, that it would consolidate within the ARAC structure an ongoing objective to "harmonize" the Joint Aviation Requirements (JAR) and the Federal Aviation Regulations (FAR). #### Tock The Flight Test Working Group's tasks are as follows: Task 1—Gate Requirements for High Lift Devices: Recommend to the ARAC simplified and clarified requirements related to gated positions on the control used by the pilot select the position of an airplane's high lift devices. Task 2—Flight Characteristics in Icing Conditions: Recommend to the ARAC new or revised requirements and compliance methods related to airplane performance and handling characteristics in icing conditions. #### Reports For each task listed above, the Flight Test Working Group should develop and present to the ARAC: 1. A recommended work plan for completion of the task, including the rationale supporting such plan, for consideration at the meeting of the ARAC to consider transport airplane and engine issues held following publication of this notice; 2. A detailed conceptual presentation on the proposed recommendation(s), prior to proceeding with the work stated in item 3. below; 3. A draft Notice of Proposed Rulemaking (NPRM), with supporting economic and other required analyses, and/or any other related guidance material or collateral documents the working group determines to be appropriate; or, if new or revised requirements of compliance methods are not recommended, a draft report stating the rationale for not making such recommendations; and 4. A status report at each meeting of the ARAC held to consider transport airplane and engine issues. #### Participation in Working Group Task An individual who has expertise in the subject matter and wishes to become a member of the working group should write to the person listed under the caption FOR FURTHER INFORMATION CONTACT expressing that desire, describing his or her interest in the task and stating the expertise he or she would bring to the working group. The request will be reviewed with the assistant chairman and working group leader, and the individual will be advised whether or not the request can be accommodated. The Secretary of Transportation has determined that the information and use of the Aviation Rulemaking Advisory Committee are necessary in the public interest in connection with the performance of duties imposed on the FAA by law. Meetings of the Aviation Rulemaking Advisory Committee will be open to the public, except as authorized by section 10(d) of the Federal Advisory Committee Act. Meetings of the working group will not be open to the public, except to the extent that individuals with an interest and expertise are selected to participate. No public announcement of working group meetings will be made. Issued in Washington, DC, on June 3, 1994. Chris A. Christie, Executive Director, Aviation Rulemaking Advisory Committee. [FR Doc. 94-14145 Filed 6-9-94; 8:45 am] # **Recommendation Letter** Gerald R. Mack Director Airplane Certification Boeing Commercial Airplane Group P.O. Box 3707, #MS 67-UM Seattle, WA 98124-2207 March 5, 1996 B-T000-ARAC-96-002 Actor ARM Mr. Anthony J. Broderick (AVR-1) Associate Administrator for Regulations and Compliance Department of Transportation Federal Aviation Administration 800 Independence Avenue, S.W. Washington, DC 20591 BOEING Dear Mr. Broderick: On behalf of the Aviation Rulemaking Advisory committee, I am pleased to submit two documents on the following subjects: Report No. SP4161LA-Q Alternate Means of Compliance Issuance Improvements **Proposed NPRM** Revision of Gate Requirements for High-Lift Device Controls These documents are enclosed in the form of a report and a proposed NPRM. The documents were developed by the Alternate Means of Compliance Working Group chaired by Dave Lotterer and the Flight Test Harmonization Working Group chaired by Jerry Zanatta. The membership of the groups are a good balance of interested parties in the US, Europe and Canada. The groups are currently focusing on other issues tasked to the Working Group but can be available if needed for docket review. The members of ARAC appreciate the opportunity to participate in the FAA Rulemaking process and fully endorse these recommendations. Sincerely, D. P mace Gerald R. Mack Chairman Transport Airplane & Engine Issues Group Aviation Rulemaking Advisory Committee Tele: (206) 234-9570, Fax: 237-4838 Enclosures # Recommendation [4910-13] DRAFT 17 August 1995 #### **DEPARTMENT OF TRANSPORTATION** **Federal Aviation Administration** [14 CFR Part 25] [Docket No. ; Notice No. RIN: Revision of Gate Requirements for High-Lift Device Controls. AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of proposed rulemaking. SUMMARY: The Federal Aviation Administration proposes to amend part 25 of the Federal Aviation Regulations (FAR) to revise the requirements concerning gated positions on the control used by the pilot to select the position of an airplane's high-lift devices. The proposed amendment would update the current standards to take into account the multiple configurations of the high-lift devices provided on current airplanes to perform landings and go-around maneuvers. The proposed amendment would also harmonize these standards with those being proposed for the European Joint Aviation Requirements (JAR). **DATES:** Comments must be received on or before [insert date 90 days from date of publication]. ADDRESSES: Comments on this notice may be mailed in triplicate to: Federal Aviation Administration, Office of the Chief Counsel, Attention: Rules Docket (AGC-10), Docket No. [insert docket number], 800 Independence Avenue SW., Washington, DC 20591; or delivered in triplicate to: Room 915G, 800 Independence Avenue SW., Washington, DC 20591. Comments delivered must be marked Docket No. [insert docket number]. Comments may be examined in Room 915G weekdays, except Federal holidays, between 8:30 a.m. and 5 p.m. In addition, the FAA is maintaining an information docket of comments in the Transport Airplane Directorate (ANM-100), Federal Aviation Administration, Northwest Mountain Region, 1601 Lind Avenue SW., Renton, WA 98055-4056. Comments in the information docket may be examined weekdays, except Federal holidays, between 7:30 a.m. and 4 p.m. **FOR FURTHER INFORMATION CONTACT:** Don Stimson, Flight Test and Systems Branch, ANM-111, Transport Airplane Directorate, Aircraft Certification Service, FAA, 1601 Lind Avenue SW., Renton, WA 98055-4056; telephone (206) 227-1129; facsimile (206) 227-1320. #### SUPPLEMENTARY INFORMATION: #### **Comments Invited** Interested persons are invited to participate in this proposed rulemaking by submitting such written data, views, or arguments as they may desire. Comments relating to any environmental, energy, or economic impact that might result from adopting the proposals contained in this notice are invited. Substantive comments should be accompanied by cost estimates. Commenters should identify the regulatory docket or notice number and submit comments in triplicate to the Rules Docket address above. All comments received on or before the closing date for comments will be considered by the Administrator before taking action on this proposed rulemaking. The proposals contained in this notice may be changed in light of comments received. All comments received will be available in the Rules Docket, both before and after the comment period closing date, for examination by interested persons. A report summarizing each substantive public contact with FAA personnel concerning this rulemaking will be filed in the docket. Persons wishing the FAA to acknowledge receipt of their comments must submit with those comments a self-addressed, stamped postcard on which the following statement is made: "Comments to Docket No. [insert docket number]." The postcard will be date stamped and returned to the commenter. #### Availability of the NPRM Any person may obtain a copy of this notice by submitting a request to the Federal Aviation Administration
(FAA), Office of Public Affairs, Attention: Public Inquiry Center, APA-230, 800 Independence Avenue SW., Washington, DC 20591; or by calling (202) 267-3484. The notice number of this NPRM must be identified in all communications. Persons interested in being placed on a mailing list for future rulemaking documents should also request a copy of Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application procedure. #### **Background** Section 25.145(c) of 14 CFR part 25 (part 25) of the Federal Aviation Regulations prescribes conditions under which it must be possible for the pilot, without using exceptional piloting skill, to prevent losing altitude while retracting the airplane's high-lift devices (e.g., wing flaps and slats). The intent of this requirement is to ensure that during a go-around from an approach to landing, the high-lift devices can be retracted at a rate that prevents altitude loss if the pilot applies maximum available power to the engines at the same time the control lever is moved to begin retracting the high-lift devices. Prior to amendment 23 to part 25, the § 25.145(c) requirement applied to retractions of the high-lift devices from any initial position to any ending position, including a continuous retraction from the fully extended position to the fully retracted position. In amendment 23 to part 25, the FAA revised this requirement to allow the use of segmented retractions if gates are provided on the control the pilot uses to select the high-lift device position. Gates are devices that require a separate and distinct motion of the control before the control can be moved through a gated position. The purpose of the gates is to prevent pilots from inadvertently moving the high-lift device control through the gated position. Gate design requirements were introduced into part 25 with amendment 23, which revised § 25.145(c) to allow the no altitude loss requirement to be met by segmented retractions of the high-lift devices between the gated positions. Amendment 23 specifies that the no altitude loss requirement applies to retractions of the high-lift devices between the gated positions and between the gates and the fully extended and fully retracted positions. In addition, the first gated control position from the landing position must correspond to the position used to establish the go-around procedure from the landing configuration. In this notice, the FAA proposes to update the gate design standards to clarify which positions of the high-lift device control should be gated and to harmonize these standards with those being proposed for the European Joint Airworthiness Requirements (JAR-25). The proposal contained in this notice was developed by the Aviation Rulemaking Advisory Committee (ARAC) and presented to the FAA as a recommendation for rulemaking. # The Aviation Rulemaking Advisory Committee The ARAC was formally established by the FAA on January 22, 1991 (56 FR 2190), to provide advice and recommendations concerning the full range of the FAA's safety-related rulemaking activity. This advice was sought to develop better rules in less overall time using fewer FAA resources than are currently needed. The committee provides the opportunity for the FAA to obtain firsthand information and insight from interested parties regarding proposed new rules or revisions of existing rules. There are over 60 member organizations on the committee, representing a wide range of interests within the aviation community. Meetings of the committee are open to the public, except as authorized by section 10(d) of the Federal Advisory Committee Act. The ARAC establishes working groups to develop proposals to recommend to the FAA for resolving specific issues. Tasks assigned to working groups are published in the Federal Register. Although working group meetings are not generally open to the public, all interested parties are invited to participate as working group members. Working groups report directly to the ARAC, and the ARAC must concur with a working group proposal before that proposal can be presented to the FAA as an advisory committee recommendation. The activities of the ARAC will not, however, circumvent the public rulemaking procedures. After an ARAC recommendation is received and found acceptable by the FAA, the agency proceeds with the normal public rulemaking procedures. Any ARAC participation in a rulemaking package will be fully disclosed in the public docket. #### Discussion of the Proposals The FAA proposes to update the gate design standards to clarify which positions of the high-lift device control should be gated and to harmonize these standards with those being proposed for the European Joint Airworthiness Requirements. First, the FAA proposes to re-codify the gate requirements of § 25.145(c) as a new § 25.145(d). Second, the FAA proposes to update and clarify the requirement that the first gated control position from the landing position corresponds to the configuration used to execute a go-around from an approach to landing. Third, the FAA proposes to clarify that performing a go-around maneuver beginning from any approved landing configuration should not result in a loss of altitude, regardless of the location of gated control positions. Fourth, the FAA proposes to add a statement to clarify that the "separate and distinct motion" required to move the high-lift device control through a gated position must be made at that gated position. The existing gate requirements are contained in a separate, but undesignated paragraph at the end of § 25.145(c). To be consistent with current codification practices, the FAA proposes to re-codify these requirements as a new § 25.145(d). Re-codification would not affect the content or intent of the requirement.. Currently, § 25.145(c) requires the first gated control position from the landing position to "correspond with the high-lift devices configuration used to establish the go-around procedure from the landing configuration." The wording of this requirement implies that airplanes have only one configuration that can be used for landing and one configuration that can be used to perform a go-around maneuver. Modern transport category airplanes, however, typically have multiple configurations that can be used for performing a landing or a go-around. Airplane manufacturers provide multiple landing and go-around configurations to optimize an airplane's performance for different environmental conditions (e.g., field elevation and temperature) and for non-normal situations (e.g., inoperative engines or systems). To provide for airplanes with multiple landing and go-around configurations, the FAA proposes to revise the portion of the gate requirements relating to the placement of the first gated control position from the landing position by inserting the word "maximum" preceding "landing position" and by replacing "the high-lift devices configuration" and "the go-around procedure" with "a configuration of the high-lift devices" and "a go-around procedure," respectively. The FAA considered allowing the location of the flap gates to be made independent of the go-around position; however, from a human factors standpoint, providing a gate at a go-around position assists the pilot in selecting the proper configuration for a maneuver that is usually unexpected and entails a high workload. The FAA considers that requiring a gate at every approved go-around position would also be undesirable. Too many gates would make it difficult for the pilot to move the control through high-lift device positions that might not be used during normal operations. For go-around maneuvers using a different high-lift device position than the position that is gated, the gate can still serve as a guide for selecting the proper configuration (e.g., the pilot could move the control to the gate and either forward or backward one or more positions). The FAA is proposing to revise Advisory Circular (AC) 25-7, "Flight Test Guide for Certification of Transport Category Airplanes" to provide additional guidance regarding criteria for locating the gate when the airplane has multiple go-around configurations. Public comments concerning this proposed revision to AC 25-7 are invited by separate notice published elsewhere in this issue of the **Federal Register**. Regardless of the location of any gates, initiating a go-around from any of the approved landing configurations should not result in a loss of altitude. Therefore, the FAA proposes to further revise the existing gate standards to require applicants to demonstrate that no loss of altitude will result from retracting the high-lift devices from each approved landing position to the position(s) corresponding with the high-lift device configuration(s) used to establish the go-around procedure(s) from that landing configuration. The existing § 25.145(c) also requires that a separate and distinct movement of the high-lift device control must be made to pass through a gated position. The FAA proposes to further clarify the gate design criteria in the proposed § 25.145(d) to specify that this separate and distinct movement can occur only at the gated position. This provision would ensure that the pilot receives tactile feedback when the control reaches a gated position. Although the FAA has always interpreted the current requirements in a manner consistent with this provision, this proposal will assist applicants by clarifying the part 25 design requirements for gated high-lift device control positions. The amendments proposed in this notice have been harmonized with proposed amendments to JAR-25. The Joint Aviation Authorities intend to publish a Notice of Proposed Amendment (NPA), which, in combination with the proposed part 25 changes contained in this notice, would achieve complete harmonization of the affected portions of part 25 and JAR-25. When it is published, the NPA will be placed
in the docket for this rulemaking. #### Regulatory Evaluation Summary Preliminary Regulatory Evaluation, Initial Regulatory Flexibility Determination, and Trade Impact Assessment Proposed changes to Federal regulations must undergo several economic analyses. First, Executive Order 12866 directs that each Federal agency shall propose or adopt a regulation only upon a reasoned determination that the benefits of the intended regulation justify its costs. Second, the Regulatory Flexibility Act of 1980 requires agencies to analyze the economic effect of regulatory changes on small entities. Third, the Office of Management and Budget directs agencies to assess the effects of regulatory changes on international trade. In conducting these analyses, the FAA has determined that this proposed rule: 1) would generate benefits that justify its costs and is not a "significant regulatory action" as defined in the Executive Order; 2) is not significant as defined in DOT's Policies and Procedures; (3) would not have a significant impact on a substantial number of small entities; and 4) would not constitute a barrier to international trade. These analyses, available in the docket, are summarized below. #### Regulatory Evaluation Summary U.S. manufacturers currently design high-lift device controls in compliance with the proposed rule. Industry representatives indicate that U.S. manufacturers would not have to redesign high-lift device controls on either newly certificated airplanes or derivatives of currently certificated models. The costs of the proposed rule, therefore, would be negligible. However, the FAA solicits information from all manufacturers of transport category airplanes concerning any possible design changes and associated costs that would result from the proposed amendment. The primary benefit of the proposed rule is the clarification of gate design standards of high-lift device controls. A second benefit is the harmonization of FAR certification requirements for controls on high-lift devices with proposed JAR certification requirements. The FAA has determined that the proposed rule would be cost-beneficial. #### Regulatory Flexibility Determination The Regulatory Flexibility Act of 1980 (RFA) was enacted by Congress to ensure that small entities are not unnecessarily or disproportionately burdened by government regulations. The RFA requires a Regulatory Flexibility Analysis if a proposed rule would have a significant economic impact, either detrimental or beneficial, on a substantial number of small entities. FAA Order 2100.14A, Regulatory Flexibility Criteria and Guidance, establishes threshold cost values and small entity size standards for complying with RFA review requirements in FAA rulemaking actions. The Order defines "small entities" in terms of size thresholds, "significant economic impact" in terms of annualized cost thresholds, and "substantial number" as a number which is not less than eleven and which is more than one-third of the small entities subject to the proposed or final rule. Order 2100.14A specifies a size threshold for classification as a small manufacturer as 75 or fewer employees. Since none of the manufacturers affected by this proposed rule has 75 or fewer employees and any costs of the proposed rule would be negligible, the proposed rule would not have a significant economic impact on a substantial number of small manufacturers. ### International Trade Impact Assessment The proposed rule will not constitute a barrier to international trade, including the export of American airplanes to foreign countries and the import of foreign airplanes into the United States. The proposed gate design requirements in this proposed rule would harmonize with those of the JAA and would, in fact, lessen the restraints on trade. #### Federalism Implications The amended regulations proposed in this rulemaking would not have substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government. Therefore, in accordance with Executive Order 12612, it is determined that this proposal would not have sufficient federalism implications to warrant preparing a Federalism Assessment. #### Conclusion Because the proposed changes to the flap gate design requirements for transport category airplanes are not expected to result in substantial economic cost, the FAA has determined that this proposed regulation would not be significant under Executive Order 12866. Because this is an issue which has not prompted a great deal of public concern, the FAA has determined that this action is not significant under DOT Regulatory Policies and Procedures (44 FR 11034, February 25, 1979). In addition since there are no small entities affected by this proposed rulemaking, the FAA certifies, under the criteria of the Regulatory Flexibility Act, that this rule, if adopted, will not have a significant economic impact, positive or negative, on a substantial number of small entities. An initial regulatory evaluation of the proposal, including a Regulatory Flexibility Determination and Trade Impact Analysis, has been placed in the docket. A copy may be obtained by contacting the person identified under **FOR FURTHER INFORMATION CONTACT**. #### List of Subjects in 14 CFR part 25 Aircraft, Aviation safety, Reporting and recordkeeping requirements. #### The Proposed Amendments Accordingly, the Federal Aviation Administration (FAA) proposes to amend 14 CFR part 25 of the Federal Aviation Regulations (FAR) as follows: # PART 25 - AIRWORTHINESS STANDARDS - TRANSPORT CATEGORY AIRPLANES 1. The authority citation for part 25 continues to read as follows: **Authority**: 49 U.S.C. app. 1344, 1354(a), 1355, 1421, 1423, 1424, 1425, 1428, 1429, 1430; 49 U.S.C. 106(g); and 49 CFR 1.47(a). - 2. Section 25.145 would be amended by revising paragraph (c), revising the text following paragraph (c)(3), and designating that text as paragraph (d) to read as follows: § 25.145 Longitudinal control. - (c) It must be possible, without exceptional piloting skill, to prevent loss of altitude when complete retraction of the high-lift devices from any position is begun during steady, straight, level flight at $1.1~\rm V_{S1}$ for propeller powered airplanes, or $1.2\rm V_{S1}$ for turbojet powered airplanes, with - - (1) * * * - (2) * * * - (3) * * * - (d) If gated high-lift device control positions are provided, paragraph (c) of this section applies to retractions of the high-lift devices from any position from the maximum landing position to the first gated position, between gated positions, and from the last gated position to the fully retracted position. The requirements of paragraph (c) of this section also apply to retractions from each approved landing position to the control position(s) associated with the high-lift device configuration(s) used to establish the goaround procedure(s) from that landing position. In addition, the first gated control position from the maximum landing position must correspond with a configuration of the high-lift devices used to establish a go-around procedure from a landing configuration. Each gated control position must require a separate and distinct motion of the control to pass through the gated position and must have features to prevent inadvertent movement of the control through the gated position. It must only be possible to make this separate and distinct motion once the control has reached the gated position. # Proposed Revisions to Advisory Circular 25-7 Flight Test Guide for Certification of Transport Category Airplanes Revise paragraph 21a(2) as follows: (2) Section 25.145(b) requires changes to be made in flap position, power, and speed without undue effort when retrimming is not-impractical. The purpose is to iensure that any of these changes are possible assuming that the pilot finds it necessary to devote at least one hand to the initiation of the desired operation without being overpowered by the primary airplane controls. The objective is to show that noan excessive change in trim willdoes not result from the application of power or the extension or retraction of wing flaps. The presence of gated positions on the flap control does not affect the requirement to demonstrate full flap extensions and retractions without changing the trim control. Compliance with its terms § 25.145(b) also requires that the relation of control force to speed be such that reasonable changes in speed may be made without encountering very high control forces. #### Revise paragraph 21a(3): - (3) Section 25.145(c) contains requirements associated primarily with attempting a goaround maneuver from the landing configuration. Retraction of the high-lift devices from the landing configuration should not result in a loss of altitude if the power or thrust controls are moved to the go-around setting at the same time that flap/slat retraction is begun. The design features involved with this requirement are the rate of flap/slat retraction, the presence of any flap gates, and the go-around power or thrust setting. The go-around power or thrust setting should be the same as is used to comply with the approach and landing climb performance requirements of $\S\S$ 25.121(d) and 25.119, and the controllability requirements of $\S\S$ 25.145(b)(3), 25.145(b)(4), 25.145(b)(5), 25.149(f), and 25.149(g). The controllability requirements may limit the go-around power or thrust setting. - (i4) <u>Section 25.145(d)</u> provides requirements for demonstrating compliance with § 25.145(c) when gates are installed on the flap selector. Section 25.145(d) also specifies gate design requirements. Flap gates, which prevent the pilot from moving the flap selector through the gated position without a separate and distinct movement of the selector, allow compliance with these requirements to be demonstrated in segments. High lift device
retraction must be demonstrated beginning from the maximum landing position to the first gated position, between gated positions, and from the last gated position to the fully retracted position. - (ii) The go around power or thrust setting should be the same as is used to comply with the approach and landing climb performance requirements of §§ 25.121(d) and 25.119, and the controllability requirements of §§ 25.145(b)(3), 25.145(b)(4), 25.145(b)(5), 25.149(f), and 25.149(g). The controllability requirements may limit the go around power or thrust setting. If gates are provided, § 25.145(d) requires the first gate from the maximum landing position to be to be located at a position corresponding to a go-around configuration. If there are multiple go-around configurations, the following criteria should be considered when selecting the location of the gate: - (A) The expected relative frequency of use of the available go-around configurations. - (B) The effects of selecting the incorrect high-lift device control position. - (C) The potential for the pilot to select the incorrect control position, considering the likely situations for use of the different go-around positions. - (D) The extent to which the gate(s) aid the pilot in quickly and accurately selecting the correct position of the high-lift devices. - (ii) Regardless of the location of any gates, initiating a go-around from any of the approved landing positions should not result in a loss of altitude. Therefore, § 25.145(d) requires that compliance with § 25.145(c) be demonstrated for retraction of the high-lift devices from each approved landing position to the control position(s) associated with the high-lift device configuration(s) used to establish the go-around procedure(s) from that landing position. A separate demonstration of compliance with this requirement should only be necessary if there is a gate between an approved landing position and its associated go-around position(s). If there is more than one associated go-around position, conducting this test using the go-around configuration with the most retracted high-lift device position should suffice, unless there is a more critical case. If there are no gates between any of the landing flap positions and their associated go-around positions, the demonstrations discussed in paragraph 21a(4) above should be sufficient to show compliance with this provision of § 25.145(d). Revise paragraph 21c(6) as follows: - (6) <u>Longitudinal control</u>, flap retraction and power application, §§ 25.145(c) and (d). Revise paragraph 21c(6)(ii) as follows: - (ii) With the airplane stable in level flight at a speed of 1.1 V_S for propeller driven airplanes, or 1.2 V_S for turbojet powered airplanes, retract the flaps to the full up position, or the next gated position, while simultaneously setting go-around power. Use the same power or thrust as is used to comply with the performance requirement of § 25.121(d), as limited by the applicable controllability requirements. It must be possible, without requiring exceptional piloting skill, to prevent losing altitude during the maneuver. Trimming is permissible at any time during the maneuver. If gates are provided, conduct this test from the maximum landing flap position to the first gate, from gate to gate, and from the last gate to the fully retracted position. The gate design requirements are specified within the rule.) If there is a gate between any landing position and its associated go-around position(s), this test should also be conducted from that landing position through the gate to the associated go-around position. If there is more than one associated go-around position, this additional test should be conducted using the go-around position corresponding to the most retracted flap position, unless another position is more critical. Keep the landing gear extended throughout the test. U.S. Department of Transportation Federal Aviation **Administration** **INFORMATION**: Regulatory Evaluation of the Proposed Rule for Revision of Gate Requirements for AUG 16 1995 **High-Lift Device Controls** Manager, Aircraft Regulatory Analysis Reply to Attn. of: Date: Branch, APO-320 To: Manager, Regulations Branch, ANM-114 Attached are copies of the Regulatory Evaluation, Regulatory Flexibility Determination, and International Trade Assessment for the proposed rule. Also attached are corresponding summaries for insertion into the preamble of the rule. If you have any questions, please contact Marilyn DonCarlos at 202-267-3319. Ward L. Keech Ward L. Keech Attachments cc:ARM-1 #### PREAMBLE SUMMARIES FOR GATES NPRM #### **REGULATORY EVALUATION SUMMARY** Preliminary Regulatory Evaluation, Initial Regulatory Flexibility Determination, and #### **Trade Impact Assessment** Proposed changes to Federal regulations must undergo several economic analyses. First, Executive Order 12866 directs that each Federal agency shall propose or adopt a regulation only upon a reasoned determination that the benefits of the intended regulation justify its costs. Second, the Regulatory Flexibility Act of 1980 requires agencies to analyze the economic effect of regulatory changes on small entities. Third, the Office of Management and Budget directs agencies to assess the effects of regulatory changes on international trade. In conducting these analyses, the FAA has determined that this rule: 1) would generate benefits that justify its costs and is not a "significant regulatory action" as defined in the Executive Order; 2) is not significant as defined in DOT's Policies and Procedures; (3) would not have a significant impact on a substantial number of small entities; and 4) would not constitute a barrier to international trade. These analyses, available in the docket, are summarized below. #### Regulatory Evaluation Summary U.S. manufacturers currently design high-lift device controls in compliance with the proposed rule. Industry representatives indicate that U.S. manufacturers would not have to redesign high-lift device controls on either newly certificated airplanes or derivatives of currently certificated models. The costs of the proposed rule, therefore, would be negligible. However, the FAA solicits information from all manufacturers of transport category airplanes concerning any possible design changes and associated costs that would result from the proposed amendment. The primary benefit of the proposed rule is the clarification of gate design standards of high-lift device controls. A second benefit is the harmonization of FAR certification requirements for controls on high-lift devices with proposed JAR certification requirements. The FAA has determined that the proposed rule would be cost-beneficial. #### Regulatory Flexibility Determination The Regulatory Flexibility Act of 1980 (RFA) was enacted by Congress to ensure that small entities are not unnecessarily or disproportionately burdened by government regulations. The RFA requires a Regulatory Flexibility Analysis if a proposed rule would have a significant economic impact, either detrimental or beneficial, on a substantial number of small entities. FAA Order 2100.14A, Regulatory Flexibility Criteria and Guidance, establishes threshold cost values and small entity size standards for complying with RFA review requirements in FAA rulemaking actions. The Order defines "small entities" in terms of size thresholds, "significant economic impact" in terms of annualized cost thresholds, and "substantial number" as a number which is not less than eleven and which is more than one-third of the small entities subject to the proposed or final rule. Order 2100.14A specifies a size threshold for classification as a small manufacturer as 75 or fewer employees. Since none of the manufacturers affected by this proposed rule has 75 or fewer employees and any costs of the proposed rule would be negligible, the proposed rule would not have a significant economic impact on a substantial number of small manufacturers. #### International Trade Impact Assessment The rule will not constitute a barrier to international trade, including the export of American airplanes to foreign countries and the import of foreign airplanes into the United States. The proposed gate design requirements in this rule would harmonize with those of the JAA and would, in fact, lessen the restraints on trade. U.S. Department of Transportation Federal Aviation Administration Office of Aviation Policy and Plans # PRELIMINARY REGULATORY EVALUATION, INITIAL REGULATORY FLEXIBILITY DETERMINATION, AND TRADE IMPACT ASSESSMENT ## REVISION OF GATE REQUIREMENTS FOR HIGH-LIFT DEVICE CONTROLS PART 25 AIRCRAFT REGULATORY ANALYSIS BRANCH, APO-320 Marilyn DonCarlos August 1995 #### TABLE OF CONTENTS | I. | INTRODUCTION | 1 | |--------------|---------------------------------------|---| | II. | BACKGROUND | 1 | | III. | COSTS AND BENEFITS | 2 | | IV. | REGULATORY FLEXIBILITY DETERMINATION | 3 | | V . 3 | INTERNATIONAL TRADE IMPACT ASSESSMENT | 3 | #### I. INTRODUCTION This regulatory evaluation examines the impacts of a proposed rule to revise the certification requirements concerning gated positions on the control used by the pilot of a transport category airplane to select the position of the airplane's high-lift devices. The proposed amendment would update the current standards to take into account the multiple configurations of high-lift devices provided on current airplanes to perform landings and go-around maneuvers. The proposed amendment would also harmonize these standards with those being proposed for the European Joint Aviation Requirements (JAR). #### II. BACKGROUND Section 25.145(c) of 14 CFR part 25 (part 25) of the Federal Aviation Regulations (FAR) prescribes conditions under which it must be possible for the pilot, without using exceptional piloting skill, to prevent losing altitude while retracting the airplane's high-lift devices (e.g., wing flaps and slats). The intent of this
requirement is to ensure that during a go-around from an approach to landing, the high-lift devices can be retracted at a rate that prevents altitude loss if the pilot applies maximum available power to the engines at the same time the control lever is moved to begin retracting the high-lift devices. Prior to amendment 23 to part 25, the § 25.145(c) requirement applied to retractions of the high-lift devices from any initial position to any ending position, including a continuous retraction from the fully extended position to the fully retracted position. In amendment 23, the FAA revised this requirement to allow the use of segmented retractions if gates are provided on the control the pilot uses to select the high-lift device position. Gates are devices that require a separate and distinct motion of the control before the control can be moved through a gated position. The purpose of the gates is to prevent pilots from inadvertently moving the high-lift device control through the gated position if so doing would result in a subsequent loss of altitude. The current rule requires that the first gated control position from the landing position must correspond to the position used to establish the go-around procedure from the landing configuration. The proposal would recodify the gate requirements by moving them from a separate and undesignated paragraph at the end of § 25.145(c) to a new § 25.145(d). It would update and clarify the requirement that the first gated control position from the landing position corresponds to the configuration used to execute a go-around from an approach to landing. The proposal would also clarify that performing a go-around maneuver beginning from any approved landing configuration should not result in a loss of altitude, regardless of the location of gated control positions. Finally, the proposal would add a statement to clarify that the "separate and distinct motion" required to move the high-lift device control through a gated position must be made at that gated position. The proposed amendment was developed by the Aviation Rulemaking Advisory Committee (ARAC) and presented to the FAA as a recommendation for rulemaking. If adopted, the proposal would harmonize gate design standards with those being proposed by the Joint Aviation Authorities (JAA). #### III. COSTS AND BENEFITS U.S. manufacturers currently design high-lift device controls in compliance with the proposed rule. Industry representatives indicate that U.S. manufacturers would not have to redesign high-lift device controls on either newly certificated airplanes or derivatives of currently certificated models. The costs of the proposed rule, therefore, would be negligible. However, the FAA solicits information from all manufacturers of transport category airplanes concerning any possible design changes and associated costs that would result from the proposed amendment. The primary benefit of the proposed rule is the clarification of gate design standards of high-lift device controls. A second benefit is the harmonization of FAR certification requirements for controls on high-lift devices with proposed JAR certification requirements. The FAA has determined that the proposed rule would be cost-beneficial. #### IV. REGULATORY FLEXIBILITY DETERMINATION The Regulatory Flexibility Act of 1980 (RFA) was enacted by Congress to ensure that small entities are not unnecessarily or disproportionately burdened by government regulations. The RFA requires a Regulatory Flexibility Analysis if a proposed rule would have a significant economic impact, either detrimental or beneficial, on a substantial number of small entities. FAA Order 2100.14A, Regulatory Flexibility Criteria and Guidance, establishes threshold cost values and small entity size standards for complying with RFA review requirements in FAA rulemaking actions. The Order defines "small entities" in terms of size thresholds, "significant economic impact" in terms of annualized cost thresholds, and "substantial number" as a number which is not less than eleven and which is more than one-third of the small entities subject to the proposed or final rule. Order 2100.14A specifies a size threshold for classification as a small manufacturer as 75 or fewer employees. Since none of the manufacturers affected by this proposed rule has 75 or fewer employees and any costs of the proposed rule would be negligible, the proposed rule would not have a significant economic impact on a substantial number of small manufacturers. #### V. TRADE IMPACT ASSESSMENT The proposed rule would not constitute a barrier to international trade, including the export of American airplanes to foreign countries and the import of foreign airplanes into the United States. The proposed gate design requirements in this rule would harmonize with those of the JAA and would, in fact, lessen the restraints on trade. ## FAA Action Friday April 22, 1994 Part III # Department of Transportation Federal Aviation Administration 14 CFR Parts 1 and 25 Revision of Certain Flight Airworthiness Standards To Harmonize With European Airworthiness Standards for Transport Category Airplanes; Proposed Rule and Notice #### **DEPARTMENT OF TRANSPORTATION** Federal Aviation Administration 14 CFR Parts 1 and 25 [Docket No. 27705; Notice No. 94-15] RIN AF 25 **Revision of Certain Flight** Airworthiness Standards To Harmonize With European **Airworthiness Standards for Transport Category Airplanes** AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of proposed rulemaking. **SUMMARY:** The Federal Aviation Administration (FAA) proposes to amend part 25 of the Federal Aviation Regulations (FAR) to harmonize certain flight requirements with standards proposed for the European Joint Aviation Requirements 25 (JAR-25). This action responds to a petition from the Aerospace Industries Association of America, Inc. and the Association Europeenne des Constructeurs de Materiel Aerospatial. These changes are intended to benefit the public interest by standardizing certain requirements, concepts, and procedures contained in the airworthiness standards of the FAR and the JAR. DATES: Comments must be received on or before July 21, 1994. ADDRESSES: Comments on this notice may be mailed in triplicate to: Federal Aviation Administration, Office of the Chief Counsel, Attention: Rules Docket (AGC-10), Docket No. 27705, 800 Independence Avenue SW., Washington, DC 20591; or delivered in triplicate to: Room 915G, 800 Independence Avenue SW., Washington, DC 20591. Comments delivered must be marked Docket No. 27705. Comments may be examined in room 915G weekdays, except Federal holidays, between 8:30 a.m. and 5 p.m. In addition, the FAA is maintaining an information docket of comments in the Transport Airplane Directorate (ANM-100), Federal Aviation Administration, Northwest Mountain Region, 1601 Lind Avenue SW., Renton, WA 98055-4056. Comments in the information docket may be examined weekdays, except Federal holidays, between 7:30 a.m. and FOR FURTHER INFORMATION CONTACT: Donald K. Stimson, Flight Test and Systems Branch, ANM-111, Transport Airplane Directorate, Aircraft Certification Service, FAA, 1601 Lind Avenue SW., Renton, WA 98055-4056; telephone (206) 227-1129; facsimile (206) 227-1320. #### SUPPLEMENTARY INFORMATION: #### Comments Invited Interested persons are invited to participate in this proposed rulemaking by submitting such written data, views, or arguments as they may desire. Comments relating to any environmental, energy, or economic impact that might result from adopting the proposals contained in this notice are invited. Substantive comments should be accompanied by cost estimates. Commenters should identify the regulatory docket or notice number and submit comments in triplicate to the Rules Docket address above. All comments received on or before the closing date for comments will be considered by the Administrator before taking action on this proposed rulemaking. The proposals contained in this notice may be changed in light of comments received. All comments received will be available in the Rules Docket, both before and after the comment period closing date, for examination by interested persons. A report summarizing each substantive public contact with FAA personnel concerning this rulemaking will be filed in the docket. Persons wishing the FAA to acknowledge receipt of their comments must submit with those comments a self-addressed, stamped postcard on which is stated: "Comments to Docket No. 27705." The postcard will be date stamped and returned to the commenter. #### Availability of the NPRM Any person may obtain a copy of this notice by submitting a request to the Federal Aviation Administration (FAA), Office of Public Affairs, Attention: Public Inquiry Center, APA-230, 800 Independence Avenue SW., Washington, DC 20591; or by calling (202) 267-3484. The notice number of this NPRM must be identified in all communications. Persons interested in being placed on a mailing list for future rulemaking documents should also request a copy of Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application procedure. #### Background Part 25 of the Federal Aviation Regulations (FAR) contains the airworthiness standards for transport category airplanes. Manufacturers of transport category airplanes must show that each airplane they produce of a different type design complies with the relevant standards of part 25. These standards apply to airplanes manufactured within the U.S. for use by U.S.-registered operators and to airplanes manufactured in other countries and imported under a bilateral airworthiness agreement. In Europe, the Joint Aviation Requirements (JAR) were developed by the Joint Aviation Authorities (JAA) to provide a common set of airworthiness standards for use within the European aviation community. The airworthiness standards for European type certification of transport
category airplanes, JAR-25, are based on part 25 of the FAR. Airplanes certificated to the JAR-25 standards, including airplanes manufactured in the U.S. for export to Europe, receive type certificates that are accepted by the aircraft certification authorities of 23 European countries. Although part 25 and JAR-25 are very similar, they are not identical. Differences between the FAR and the JAR can result in substantial additional costs when airplanes are type certificated to both standards. These additional costs, however, do not always bring about an increase in safety. For example, part 25 and JAR-25 may use different means to accomplish the same safety intent. In this case, the manufacturer is usually burdened with meeting both requirements, although the level of safety is not increased correspondingly. Recognizing that a common set of standards would not only economically benefit the aviation industry, but would also maintain the necessary high level of safety, the FAA and JAA consider harmonization to be a high priority. On May 22, 1990, the Aerospace Industries Association of America, Inc. (AIA) and the Association Europeenne des Constructeurs de Materiel Aerospatial (AECMA) jointly petitioned the FAA and JAA to harmonize certain requirements contained in part 25 of the FAR and in JAR-25. In their petition, a summary of which was published in the July 17, 1990, edition of the Federal Register (55 FR 137), AIA and AECMA requested changes to §§ 25.143(c), 25.143(f), 25.149, and 25.201 to standardize the requirements, concepts, and procedures for certification flight testing and to enhance reciprocity between the FAA and JAA. In addition, AIA and AECMA recommended changes to FAA Advisory Circular (AC) 25-7, "Flight Test Guide for Certification of Transport Category Airplanes," to ensure that the harmonized standards would be interpreted and applied consistently. A copy of that petition is included in the docket for this rulemaking. On September 26, 1991, the Aviation Rulemaking Advisory Committee (ARAC) established the Flight Test Working Group, assigning it the task of developing either a draft notice of proposed rulemaking (NPRM) or a denial of the AIA/AECMA petition. If accepted by the ARAC, the draft NPRM or petition denial would be delivered to the FAA as an advisory committee recommendation. The public notice establishing the Flight Test Working Group appeared in the Federal Register on January 13, 1992 (57 FR 1297). The Flight Test Working Group was later renamed the Flight Test Harmonization Working Group and its scope was clarified to include developing a similar proposal to amend JAR-25, as necessary, to achieve harmonization. The rulemaking proposal contained in this notice was developed by the Flight Test Harmonization Working Group. It was presented to the FAA by the ARAC as a recommended response to the AIA/ AECMA petition. Rather than proposing a simple acceptance or denial of the petition, the working group used the petition as a starting point for developing a rulemaking proposal that would accomplish the goal of harmonizing not only the sections of part 25 and JAR-25 addressed in the petition, but also related sections. #### The Aviation Rulemaking Advisory Committee The ARAC was formally established by the FAA on January 22, 1991 (56 FR 2190), to provide advice and recommendations concerning the full range of the FAA's safety-related rulemaking activity. This advice was sought to develop better rules in less overall time using fewer FAA resources than are currently needed. The committee provides the opportunity for the FAA to obtain firsthand information and insight from interested parties regarding proposed new rules or revisions of existing rules. There are over 60 member organizations on the committee, representing a wide range of interests within the aviation community. Meetings of the committee are open to the public, except as authorized by section 10(d) of the Federal Advisory Committee Act. The ARAC establishes working groups to develop proposals to recommend to the FAA for resolving specific issues. Tasks assigned to working groups are published in the Federal Register. Although working group meetings are not generally open to the public, all interested parties are invited to participate as working group members. Working groups report directly to the ARAC, and the ARAC must concur with a working group proposal before that proposal can be presented to the FAA as an advisory committee recommendation. The activities of the ARAC will not, however, circumvent the public rulemaking procedures. After an ARAC recommendation is received and found acceptable by the FAA, the agency proceeds with the normal public rulemaking procedures. Any ARAC participation in a rulemaking package will be fully disclosed in the public docket. #### Discussion of the Proposals The FAA proposes amending certain sections of the FAR, as recommended by the ARAC, to harmonize these sections with JAR-25. The JAA intend to publish a Notice of Proposed Amendment (NPA), also developed by the Flight Test Harmonization Working Group, to revise JAR-25, as necessary, to ensure harmonization in those areas for which the proposed amendments differ from the current JAR-25. When it is published, the NPA will be placed in the docket for this rulemaking. The FAA proposes to: (1) Introduce the term "go-around power or thrust setting" to clarify certain part 25 flight requirements; (2) revise the maximum control forces permitted for demonstrating compliance with the controllability and maneuverability requirements; (3) provide requirements for stick force and stick force gradient in maneuvering flight; (4) revise and clarify the requirements defining minimum control speed during approach and landing; (5) clarify the procedural and airplane configuration requirements for demonstrating stalls and revise the list of acceptable flight characteristics used to define the occurrence of stall; and (6) require that stall characteristics be demonstrated for turning flight stalls at deceleration rates up to 3 knots per second. Revisions are also proposed for AC 25-7 to ensure consistent application of these proposed revised standards. Public comments concerning the revisions to AC 25-7 are invited by separate notice published elsewhere in this issue of the Federal Register. #### Proposal 1 Certain part 25 flight requirements involving flight conditions other than takeoff (i.e., §§ 25.119, 25.121(d), 25.145(b)(3), 25.145(b)(4), 25.145(b)(5), 25.145(c)(1), 25.149(f)(6), and 25.149(g)(7)(ii)) specify using the maximum available takeoff power or thrust as being representative of the appropriate maximum in-flight power or thrust. In practice, however, the power or thrust setting used to obtain the maximum in-flight power or thrust (commonly referred to as the go-around power or thrust setting) usually differs from the setting used for takeoff. In the past, the FAA interpreted the words 'maximum available takeoff power or thrust" to mean the maximum in-flight power or thrust, with the takeoff power or thrust setting not always being "available" in flight. The FAA proposes changing the nomenclature to "goaround power or thrust setting" for clarity and to reflect terminology commonly used in the operational environment. (In the context of this discussion, the term "go-around" refers to a deliberate maneuver to abort a landing attempt prior to touchdown by applying the maximum available power or thrust, retracting flaps, and climbing to a safe level-off altitude). (The go-around power or thrust setting may differ from the takeoff power or thrust setting, for example, due to the airspeed difference between the takeoff and go-around flight conditions. In addition, complying with the powerplant limitations of § 25.1521 may result in a lower power setting at the higher airspeeds associated with a go-around. As another example, the controllability requirements of §§ 25.145(b)(3), 25.145(b)(4), 25.145(b)(5), 25.149(f), and 25.149(g) may also limit the go-around power or thrust setting to less than that used for takeoff. Another reason to separate the takeoff and go-around power (or thrust) nomenclature is that certification practice has not required, and applicants have not always proposed, changing the go-around power or thrust setting when a previously approved takeoff power or thrust is increased. The FAA proposes to substitute the term "go-around power or thrust setting" for "maximum available takeoff power or thrust" in §§ 25.119, 25.121(d), 25.145(b)(3), 25.145(b)(4), 25.145(c)(1), 25.149(f)(6), and 25.49(g)(7)(ii). (Note that the requirement of § 25.145(b)(5) also uses the power specified in § 25.145(b)(4)). In addition, the FAA proposes to define "go-around power or thrust setting" in part 1 as "the maximum allowable in-flight power or thrust setting identified in the performance data." With this revision, the FAA would clarify that the applicable controllability requirements should be based on the same power or thrust setting used to determine the approach and landing climb performance contained in the approved Airplane Flight Manual (AFM). The proposed terminology refers to a power or thrust "setting" rather than a power or thrust to make it clear that existing engine ratings would be unaffected. The powerplant limitations of § 25.1521 would continue to apply at the go-around power (or thrust) setting. Existing certification practices would also remain the same, including the relationship between the power or thrust values used to comply with the landing and approach climb requirements of §§ 25.119 and 25.121(d). For example, the thrust value used to comply with § 25.121(d) may be greater than that used for § 25.119, if the operating engine(s) do not reach the maximum allowable in-flight thrust by the end of the eight second time period specified in § 25.119. #### Proposal 2 The FAA proposes to revise the table in § 25.143(c) to match the
control force limits currently provided in JAR 25.143(c). This table prescribes the maximum control forces for the controllability and maneuverability flight testing required by §§ 25.143(a) and 25.143(b). For transient application of the pitch and roll control, the revised table would contain more restrictive maximum control force limits for those maneuvers in which the pilot might be using one hand to operate other controls, relative to those maneuvers in which both hands are normally available for applying pitch and roll control. The revised table would retain the current control force limits for transient application of the yaw control, and for sustained application of the pitch, roll, and yaw controls. For maneuvers in which only one hand is assumed to be available, the FAA proposes to reduce the maximum permissible control forces from 75 pounds to 50 pounds for pitch control, and from 60 pounds to 25 pounds for roll control. These lower control forces would be more consistent with § 25.145(b), which states that a force of 50 pounds for longitudinal (pitch) control is "representative of the maximum temporary force that readily can be applied by one hand." In addition to adding more restrictive control force limits for maneuvers in which only one hand may be available to apply pitch and roll control, the FAA proposes to reduce the maximum permissible force for roll control from 60 pounds to 50 pounds for maneuvers in which the pilot normally has both hands available to operate the control. The FAA proposes to further revise § 25.143(c) by specifying that the table of maximum permissible control forces applies only to conventional wheel type controls. This restriction, also specified in the current IAR 25.143(c), recognizes that different control force limits may be necessary when considering sidestick controllers or other types of control systems. For clarification, the FAA proposes to replace the terms "temporary" and 'prolonged," meed in \$\$ 25.143(c), 25.143(d), 25.143(e), and 25.145(b), with "transient" and "sustained," respectively. "Transient" forces refer to those control forces resulting from maintaining the intended flight path during changes to the airplane configuration, normal transitions from one flight condition to another, or regaining control after a failure. The pilot is assumed to take immediate action to reduce or eliminate these forces by retrimming or by changing the airplane configuration or flight condition. "Sustained forces," on the other hand, refer to those control forces resulting from normal or failure conditions that cannot readily be trimmed out or aliminated. The FAA is proposing to add these definitions of "transient" and "sustained" forces to AC 2**5**-7. In addition, the FAA proposes several minor editorial changes for §§ 25.143(c) through 25.143(e) to improve readability and correct grammatical errors. For example, the words "immediately preceding" are proposed to replace "next preceding" in § 25.143(d). These editorial changes are intended to clarify the existing interpretation of the affected sections. #### Proposal 3 The FAA proposes to add the JAR 25.143(f) requirements regarding control force characteristics during maneuvering flight to part 25 as a new § 25:143(f). By adding these requirements, the FAA would ensure that the force to move the control column, or "stick," must not be so great as to make excessive demands on the pilot's strength when maneuvering the airplane, and must not be so low that the airplane can easily be overstressed inadvertently. These harmonized requirements would apply up to the speed V_{FC}/M_{FC} (the maximum speed for stability characteristics) rather than the speed V_{MC}/M_{MC} (the maximum operating limit speed) specified by the current JAR 25.143(f). Requiring these meneuvering requirements to be met up to V_{FC}/M_{MC} is consistent with other part 25 stability requirements. Section 25.253, which defines V_{FC}/M_{MC}, would be revised to reference the use of this speed in the proposed § 25.143(f). An acceptable means of compliance with § 25.143(f), including detailed interpretations of the stick force characteristics that meet these requirements, would be added to AC 25-7. #### Proposal 4 Section 25.149(f) requires that the minimum control speed be determined assuming the critical engine suddenly fails during (or just prior to) go-around from an all-engines-operating approach. For airplanes with three or more engines, § 25.149(g) requires the minimum control speed to be determined for a one-engine-inoperative landing approach in which a second critical engine suddenly fails. The FAA proposes to revise §§ 25.149(f) through 25.149(h) to clarify and revise the criterie for establishing these minimum control speeds, V_{MCL} and V_{MCL-2}, respectively, for use during approach and landing. The FAA proposes to clarify that VMCL and VMCL-2 apply not only to the airplane's approach configuration(s), as prescribed in the current standards, but also to the landing configuration(s). The FAA secognizes that configuration changes occur during approach and landing (a.g., flap setting and landing gear position) and considers that the minimum control speeds provided in the AFM should ensure airplane controllability, following a sudden engine failure, throughout the approach and landing. Applicants would have the option of determining VMCL and VMCL-2 either for the most critical of the approach and landing configurations (i.e., the configuration resulting in the highest minimum central speed), or for each configuration used for approach or for landing. By determining the minimum control speeds in the most critical configuration, applicants would not be required to conduct any additional testing to that already required by the current standards. Only if these resulting speeds proved too constraining for other configurations would the FAA expect applicants to exercise the option of testing multiple configurations. The FAA also proposes to add provisions so state the position of the propeller, for propeller sirplanes, when establishing these minimum control speeds. For the critical engine that is suddenly made inoperative, the propeller position must reflect the most critical mode of powerplant failure with respect to controllability, as required by § 25.149(a). Also, since credit cannot be given for pilot action to feather the propeller during this high flightcrew workload phase of flight, the FAA proposes that Visci and Visci be detarmined with the propeller position of the most critical engine in the position it automatically achieves. For V_{MCL-2} , the engine that is already inoperative before beginning the approach may be feathered, since the pilot is expected to ensure the propeller is feathered before initiating the approach. To assure that airplanes have adequate lateral control capability at V_{MCL} and V_{MCL-2} , the FAA proposes to require the airplane to be capable of rolling, from an initial condition of steady straight flight, through an angle of 20 degrees in not more than 5 seconds, in the direction necessary to start a turn away from the inoperative engine. This proposed addition to § 25.149 is contained in the current JAR 25.149. The FAA is proposing guidance material for AC 25-7 to enable applicants to additionally determine the appropriate minimum control speeds for an approach and landing in which one engine, and, for airplanes with three or more engines, two engines, are already inoperative prior to beginning the approach. These speeds, V_{MCL(1 out)} and V_{MCL-2(2 out)}, would be less restrictive than V_{MCL} and V_{MCL-2} because the pilot is assumed to have trimmed the airplane for the approach with an inoperative engine (for V_{MCL(1 out)}) or two inoperative engines (for $V_{MCL-2(2 \text{ out})}$). Also, the approach and landing procedures under these circumstances may use different approach and landing flaps than for the situations defining V_{MCL} or V_{MCL-2} . These additional speeds can be used as guidance in determining the recommended procedures and speeds for a one-engineinoperative, or, in the case of an airplane with three or more engines, a two-engine-inoperative approach and landing The FAA proposes to revise § 25.125 to require the approach speed used for determining the landing distance to be equal to or greater than V_{MCL}, the minimum control speed for approach and landing with all-engines-operating. This provision would ensure that the speeds used for normal landing approaches with all-engines-operating would provide satisfactory controllability in the event of a sudden engine failure during, or just prior to, a go-around. #### Proposal 5 The FAA proposes to revise the stall demonstration requirements of § 25.201 to clarify the airplane configurations and procedures used in flight tests to demonstrate stall speeds and stall handling characteristics. The list of acceptable flight characteristics used to define the occurrence of stall would also be revised. To be consistent with current practice, § 25.201(b)(1) would require that stall demonstrations also be conducted with deceleration devices (e.g., speed brakes) deployed. Additionally, the FAA proposes clarifying the intent of § 25.201(b) to cover normal, rather than failure, conditions by requiring that stalls need only be demonstrated for the approved configurations. Section 25.201(c) would be revised to more accurately describe the procedures used for demonstrating stall handling characteristics. The cross-reference to § 25.103(b), currently contained in § 25.201(c)(1), would be moved to a new § 25.201(b)(4) for editorial clarity and harmony with the JAR-25 format. Reference to the pitch control reaching the aft stop, which would be interpreted as one of the indications that the airplane has stalled, would be moved from § 25.201(c)(1) to § 25.201(d)(3). The list of acceptable flight characteristics that define the occurrence of a
stall, used during the flight tests demonstrating compliance with the stall requirements, is provided in § 25.201(d). The FAA proposes to revise this list to conform with current practices. Section 25.201(d)(1)(ii) would be removed to clarify that a rolling motion, occurring by itself, is not considered an acceptable flight characteristic for defining the occurrence of a stall. The proposed § 25.201(d)(2) would replace the criteria of §§ 25.201(d)(1)(iii) and 25.201(d)(2) because only deterrent buffeting (i.e., a distinctive shaking of the airplane that is a strong and effective deterrent to further speed reduction) is considered to comply with those criteria. Finally, the proposed § 25.201(d)(3) would define as a stall a condition in which the airplane does not continue to pitch up after the pitch control has been pulled back as far as it will go and held there for a short period of time. Guidance material would be added to AC 25-7 to define the length of time that the control stick must be held in this full aft position when using § 25.201(d)(3) to define a stall. #### Proposal 6 Section 25.201 currently requires stalls to be demonstrated at airspeed deceleration rates (i.e., entry rates) not exceeding one knot per second. JAR 25.201 currently requires, in addition, that turning flight stalls must also be demonstrated at accelerated rates of entry into the stall (i.e., dynamic stalls). According to the JAA, the intended procedure for demonstrating dynamic stalls begins with a 1 knot per second deceleration from the trim speed (similar to normal stalls). Then, approximately halfway between the trim speed and the stall warning speed, the flight test pilot applies the elevator control to achieve an increase in the rate of change of angle-of-attack. The final angle-of-attack rate and the control input to achieve it should be appropriate to the type of airplane and its particular control characteristics. The AIA/AECMA petition detailed various difficulties with interpretation of the JAR-25 requirement, noted that the requirement is not contained in the FAR, and proposed that dynamic stalls be removed from JAR-25. Some of the concerns with the JAR-25 dynamic stall requirement include: (1) A significant number of flight test demonstrations for compliance used inappropriate piloting techniques considering the capabilities of transport category airplanes; (2) the stated test procedures depend, to a large extent, on pilot interpretation, resulting in test demonstrations that could vary significantly for different test pilots; (3) the safety objective of the requirement is not well understood within the aviation community; and (4) the flight test procedures that are provided are inconsistent with the flight characteristics being evaluated. As a result, applicants are unable to ensure that their designs will comply with the JAR-25 dynamic stall requirement prior to the certification flight test. In practice, FAA certification testing has typically included stall demonstrations at entry rates higher than 1 knot per second. For airplanes with certain special features, such as systems designed to prevent a stall or that are needed to provide an acceptable stall indication, higher entry rates are demonstrated to show that the system will continue to safely perform its intended function under such conditions. These higher entry rate stalls are different, however, from the JAR-25 dynamic stalls. Rather than simply deleting the dynamic stall requirement from JAR-25, or adding this requirement to part 25 of the FAR, the ARAC recommended harmonizing the two standards by requiring turning flight stalls be demonstrated at steady airspeed deceleration rates up to 3 knots per second. The FAA agrees with this recommendation and proposes to add the requirement for a higher entry rate stall demonstration to part 25 as § 25.201(c)(2). The current § 25.201(c)(2) would be redesignated § 25.201(c)(3). The JAA is proposing to replace the JAR-25 dynamic stall requirement with the ARAC recommendation. The proposed higher entry rate stall demonstration is a controlled and repeatable maneuver that meets the objective of evaluating stall characteristics over a range of entry conditions that might reasonably be encountered by transport category airplanes in operational service. Some degradation in characteristics would be accepted at the higher entry rates, as long as it does not present a major threat to recovery from the point at which the pilot has recognized the stall. Guidance material is being proposed for AC 25-7 to point out that the specified deceleration rate, and associated rate of increase in angle of attack, should be established from the trim speed specified in § 25.103(b)(1) and maintained up to the point at which the airplane stalls. The FAA proposes to revise § 25.203(c) to specify a bank angle that must not be exceeded during the recovery from the turning flight stall demonstrations. Currently, § 25.203(c) provides only a qualitative statement that a prompt recovery must be easily attainable using normal piloting skill. By specifying a maximum bank angle limit, the FAA proposes to augment this qualitative requirement with a quantitative one. For deceleration rates up to 1 knot per second, the maximum bank angle would be approximately 60 degrees in the original direction of the turn, or 30 degrees in the opposite direction. These bank angle limits are currently contained in JAR-25 guidance material, and have been used informally during FAA certification programs as well. For deceleration rates higher than 1 knot per second, the FAA proposes to allow a greater maximum bank angleapproximately 90 degrees in the original direction of the turn, or 60 degrees in the opposite direction. These are the same acceptance criteria currently used by the JAA to evaluate dynamic stail demonstrations. In addition to the amendments to part 25 proposed in this notice, revisions to AC 25–7 are being proposed to ensure that the harmonized standards would be interpreted and applied consistently. AC 25–7 provides guidelines that the FAA has found acceptable regarding flight testing transport category airplanes to demonstrate compliance with the applicable airworthiness requirements. Public comments concerning the proposed revisions to AC 25–7 are invited by separate notice published elsewhere in this issue of the Federal Register. #### Regulatory Evaluation Summary Preliminary Regulatory Evaluation, Initial Regulatory Plexibility Determination, and Trade Impact Assessment Proposed changes to Federal regulations must undergo several economic analyses. First, Executive Order 12866 directs that each Federal agency shall propose or adopt a regulation only upon a reasoned determination that the benefits of the intended regulation justify its costs. Second, the Regulatory Flexibility Act of 1980 requires agencies to analyze the economic effect of the regulator changes on small entities. Third, the Office of Management and Budget directs agencies to assess the effects of regulatory changes on international trade. In conducting these analyses, the FAA has determined that this rule: (1) Would generate benefits that justify its costs and is not a "significant regulatory action" as defined in the Executive Order; (2) is **not significant as defined** in DOT's Policies and Proceduses; (3) would not have a significant impact on a substantial number of small entities; and (4) would not constitute a barrier to international trade. These analyses, available in the docket, are summarized below. #### Cost Benefit Analysis Three of the proposed 48 revisions to the flight test airworthiness standards of part 25 would require additional flight testing and engineering analysis, resulting in compliance costs of \$18,500 per type cartification. When amortized over a representative production run of 500 airplanes, this total cost would result in a negligible incremental cost of \$37 per airplane. The FAA solicits comments concerning the incremental flight test cartification costs attributable to the proposed rule. The primary benefits of the proposed rule would be harmonization of flight test airworthiness standards with the European Joint Aviation Requirements and clarification of existing standards. The resulting increased uniformity of flight test standards would simplify airworthiness approval for import and export purposes and would avoid some of the costs that can result when manufacturers seek type certification under both sets of standards. While not readily quantifiable, the potential ost avoidance would exceed the relatively minor incremental costs of the proposed rule. The proposed rule would provide additional benefits by updating certain airworthiness standards. These updated standards would adopt terrainology commonly used in airplane operations as well as better reflect current flight test practices. Regulatory Flexibility Determination The Regulatory Flexibility Act of 1980 (RFA) was enacted by Congress to ensure that small entities are not unnecessarily or disproportionately burdened by Federal regulations. The RFA requires a Regulatory Flexibility Analysis if a proposed rule would have a significant economic impact, either detrimental or beneficial, on a substantial number of small entities. Based on FAA Order 2100.14A, Regulatory Flexibility Criteria and Guidance, the FAA has determined that the proposed amendments would not have a significant economic impact on a substantial number of small entities. #### Trade Impact Assessment The proposed rule would not constitute a barrier to internetional trade, including the export of American airplanes to foreign countries, and the import of foreign airplanes into the United States. Instead, the proposed flight testing standards have been harmonized with those of foreign aviation authorities, thereby lessoning restraints on trade. #### Federalism Implications The amended segulations proposed in this rulemaking
would not have substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government. Therefore, in accordance with Executive Order 12612, it is determined that this proposal would not have sufficient federalism implications to warrant preparing a Federalism Assessment. #### Conclusion Because the proposed changes to standardize specific flight requirements of part 25 of the FAR are not expected to result in substantial economic cost, the FAA has determined that this proposed regulation would not be significant under Executive Order 12866. Bécause this is an issue which has not prompted a great deal of public concern, the FAA has determined that this action is not significant under DOT Regulatory Policies and Procedures (44 FR 11034, February 25, 1979). In addition since there are no small entities affected by this proposed rulemaking, the FAA certifies, under the criteria of the Regulatory Flexibility Act, that this rule, if adopted, will not have a significant economic impact, positive or negative, on a substantial number of small entities. An initial regulatory evaluation of the proposal, including a Regulatory Flexibility Determination and Trade Impact Analysis, has been placed in the docket. A copy may be obtained by contacting the person identified under FOR FURTHER INFORMATION CONTACT. #### **List of Subjects** 14 CFR Part 1 Air transportation. #### 14 CFR Part 25 Aircraft, Aviation safety, Reporting and recordkeeping requirements. #### The Proposed Amendments Accordingly, the Federal Aviation Administration (FAA) proposed to amend 14 CFR parts 1 and 25 of the Federal Aviation Regulations (FAR) as follows: # PART 1—DEFINITIONS AND ABBREVIATIONS 1. The authority citation for part 1 continues to read as follows: Authority: 49 U.S.C. app. 1347, 1348, 1354(a), 1357(d)(2), 1372, 1421 through 1430, 1432, 1442. 1443, 1472, 1510, 1522, 1652(e), 1655(c), 1657(f), and 49 U.S.C. 108(g). Section 1.1 is amended by adding a new definition to read as follows: #### § 1.1 General definitions. "Go-around power or thrust setting" means the maximum allowable in-flight power or thrust setting identified in the performance data. #### PART 25—AIRWORTHINESS STANDARDS—TRANSPORT CATEGORY AIRPLANES 3. The authority citation for part 25 continues to read as follows: Authority: 49 U.S.C. app. 1344, 1354(a), 1355, 1421, 1423, 1424, 1425, 1428, 1429, 1430; 49 U.S.C. 106(g); and 49 CFR 1.47(a). 4. Section 25.119 is amended by revising paragraph (a) to read as follows: #### § 25.119 Landing climb: All-enginesoperating. (a) The engines at the power or thrust that is available eight seconds after initiation of movement of the power or thrust controls from minimum flight idle to the go-around power or thrust, setting; and 5. Section 25.121 is amended by revising paragraph (d)(1) to read as follows: #### § 25.121 Climb: One-engine-inoperative. (d) * * * The critical engine inoperative, the remaining engines at the go-around power or thrust setting; Section 25.125 is amended by revising paragraph (a)(2) to read as follows: #### \$25.125 Landing. * * (a) * * * (2) A stabilized approach, with a calibrated airspeed of not less than 1.3 Vs or V_{MCL}, must be maintained down to the 50 foot height. 7. Section 25.143 is amended by revising paragraphs (c), (d), and (e) and adding a new paragraph (f) to read as follows: #### § 25.143 General. (c) The following table prescribes, for conventional wheel type controls, the maximum control forces permitted during the testing required by peragraphs (a) and (b) of this section: | Force, in pounds,
applied to the con-
trol wheel or rudder
pedals | Pitch | Roll | Yaw | |--|-------------|------|-----| | For transient appli-
cation for pitch
and roll control—
two hands avail-
able for control
For transient appli-
cation for pitch
and roll control— | 75 | 50 | | | one hand avail-
able for control
For transient appli-
cation for yaw | 50 | 25 | | | For sustained appli- | *********** | | 150 | | cationappa- | 10 | 5 | 20 | (d) Approved operating procedures or conventional operating practices must be followed when demonstrating compliance with the control force limitations for transient application that are prescribed in paragraph (c) of this section. The airplane must be in trim, or as near to being in trim as practical, in the immediately preceding steady flight condition. For the takeoff condition, the airplane must be trimmed according to the approved operating procedures. (e) When demonstrating compliance with the control force limitations for sustained application that are prescribed in paragraph (c) of this section, the airplane must be in trim, or as near to being in trim as practical. (f) When meneuvering at a constant airspeed or Mach number (up to Vpc/ M_{PC}), the stick forces and the gradient of the stick force versus maneuvering load factor must lie within satisfactory limits. The stick forces must not be so great as to make excessive demands on the pilot's strength when maneuvering the airplane, and must not be so low that the airplane can easily be overstressed inadvertently. Changes of gradient that occur with changes of load factor must not cause undue difficulty in maintaining control of the airplane, and local gradients must not be so low as to result in a danger of overcontrolling. 8. Section 25.145 is amended by revising the introductory text of paragraphs (b), and paragraphs (b)(3), (b)(4), and (c)(1) to read as follows: #### § 25.145 Longitudinal control. (b) With the landing gear extended, no change in trim control, or exertion of more than 50 pounds control force (representative of the maximum transient force that can be applied readily by one hand) may be required for the following maneuvers: (3) Repeat paragraph (b)(2) except at the go-around power or thrust setting. (4) With power off, flaps retracted, and the airplane trimmed at 1.4 V_{52} , rapidly set go-around power or thrust while maintaining the same airspeed. (c) * * * (1) Simultaneous movement of the power or thrust controls to the goaround power or thrust setting; 9. Section 25.149 is amended by revising paragraphs (f), (g) and (h) to read as follows: #### § 25.149 Minimum Control Speed. - (f) V_{MCL}, the minimum control speed during approach and landing with all engines operating, is the calibrated airspeed at which, when the critical engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine still inoperative, and maintain straight flight with an angle of bank of not more than 5 degrees. V_{MCL} must be established with— - (1) The airplane in the most critical configuration (or, at the option of the applicant, each configuration) for approach and landing with all engines operating: (2) The most unfavorable center of gravity; (3) The airplane trimmed for approach with all engines operating; (4) The most unfavorable weight, or, at the option of the applicant, as a function of weight; (5) The propeller of the inoperative engine, if applicable, in the position it automatically achieves; and (6) Go-around power or thrust setting on the operating engine(s). (g) For airplanes with three or more engines, V_{MCL-2}, the minimum control speed during approach and landing with one critical engine inoperative, is the calibrated airspeed at which, when a second critical engine is suddenly made inoperative, it is possible to maintain control of the airplane with both engines still inoperative, and maintain straight flight with an angle of bank of not more than 5 degrees. V_{MCL-2} must be established with— (1) The airplane in the most critical configuration (or, at the option of the applicant, each configuration) for approach and landing with one critical engine inoperative; (2) The most unfavorable center of gravity: (3) The airplane trimmed for approach with one critical engine inoperative; (4) The most unfavorable weight, or, at the option of the applicant, as a function of weight; (5) If applicable, the propeller of the more critical engine in the position it automatically achieves and the propeller of the other inoperative engine feathered; (6) The power or thrust on the operating engine(s) necessary to maintain an approach path angle of 3 degrees when one critical engine is inoperative; and (7) The power or thrust on the operating engine(s) rapidly changed, immediately after the second critical engine is made inoperative, from the power or thrust prescribed in paragraph (g)(6) of this section to— (i) Minimum power or thrust; and (ii) Go-around power or thrust setting. (h) In demonstrations of V_{MCL} and (1) The rudder force may not exceed 150 pounds; (2) The airplane may not exhibit hazardous flight characteristics or require exceptional piloting skill, alertness, or strength; (3) Lateral control must be sufficient to roll the airplane, from an initial condition of steady straight flight, through an angle of 20 degrees in the direction necessary to initiate a turn away from the inoperative engine(s), in not more than 5 seconds; and (4) For propeller airplanes, hazardous flight characteristics must not be exhibited due to any propeller position achieved when the engine fails or during any likely subsequent movements of the engine or propeller controls. 10. Section 25.201 is amended by revising paragraphs (b), (c), and (d) to read as follows: #### § 25.201 Stall demonstration. (b) In each condition required by paragraph (a) of this section, it must be possible to meet the applicable requirements of § 25.203 with— (1) Flaps, landing gear, and deceleration devices in any likely combination of positions approved for operation; (2) Representative weights
within the range for which certification is requested; (3) The most adverse center of gravity for recovery; and (4) The airplane trimmed for straight flight at the speed prescribed in § 25.103(b)(1). (c) The following procedures must be used to show compliance with § 25.203: (1) Starting at a speed sufficiently above the stalling speed to ensure that a steady rate of speed reduction can be established, apply the longitudinal control so that the speed reduction does not exceed one knot per second until the airplane is stalled. (2) In addition, for turning flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per second. (3) As soon as the airplane is stalled, recover by normal recovery techniques. (d) The airplane is considered stalled when the behavior of the airplane gives the pilot a clear and distinctive indication of an acceptable nature that the airplane is stalled. Acceptable indications of a stall, occurring either individually or in combination, are— (1) A nose-down pitch that cannot be readily arrested, which may be accompanied by a rolling motion that is not immediately controllable (provided that the rolling motion complies with § 25.203 (b) or (c) as appropriate); - (2) Buffeting, of a magnitude and severity that is a strong and effective deterrent to further speed reduction; or - (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when the control is held full aft for a short time before recovery is initiated. - 11. Section 25.203 is amended by revising paragraph (c) to read as follows: #### § 25.203 Stail characteristics. - (c) For turning flight stalls, the action of the airplane after the stall may not be so violent or extreme as to make it difficult, with normal piloting skill, to effect a prompt recovery and to regain control of the airplane. The maximum bank angle that occurs during the recovery may not exceed— - (1) Approximately 60 degrees in the original direction of the turn, or 30 degrees in the opposite direction, for deceleration rates up to 1 knot per second; and - (2) Approximately 90 degrees in the original direction of the turn, or 60 degrees in the opposite direction, for deceleration rates in excess of 1 knot per second. - 12. Section 25.253 is amended by revising paragraph (b) to read as follows: #### § 25.253 High-speed characteristics. (b) Maximum speed for stability characteristics, V_{PC}/M_{CF}. V_{PC}/M_{CF} is the maximum speed at which the requirements of §§ 25.143(f), 25.147(e), 25.175(b)(1), 25.177, and 25.181 must be met with flaps and landing gear retracted. It may not be less than a speed midway between V_{MC}/M_{MC} and V_{DF}/M_{DF}, except that, for altitudes where Mach number is the limiting factor, M_{PC} need not exceed the Mach number at which effective speed warning occurs. Issued in Washington, DC, on April 11, 1994. #### Thomas E. McSweeny, Director, Aircraft Certification Service. [FR Doc. 94-9758 Filed 4-21-94; 8:45 am]